Study of nanoparticles in electrochemical sensor for environmental applications. The experience in Costa Rica

Ricardo Starbird, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica

Electrode fabrication

1. Flexibel film Kapton®

2. Gold deposition by sputtering (45 nm) on the flexible film using a shadow mask

3. Passivation by photolithography

4. Electrode with specify area are prepared

5. Chemical modification of the electrode.

Electrode fabrication

• Metal deposition mask

Fig. 5: Mask for flexible electrodes. Designed by Hayden Phillips

Fig. 6: Impedance interdigitated flexible electrodes. Designed by Jorge Sandoval

Electrode fabrication

Fig. 7: (A) Home-made gold electrodes (CICIMA-UCR); (B) Chemical modified gold electrode by PEDOT

Chemical Modification

Conductive Polymer properties

- Electrochemically stability
- Biocompatibility
- Low electrode impedance
- High charge injection capability
- High corrosion resistance
- Can be structured at micro and nanoscale
- Provides a dispersion system for further formulation

Polymerization

Fig. 1: EDOT polymerization: oxidation of the 3,4-ethylenedioxythiophene monomer

Conductive Polymer: interface

Fig. 2: PEDOT REDOX mechanism

Electrode Interface: Double layer mechanism

Solvent molecule
anion
cation

Fig. 3: Electric double layer structure. Electrical potential profile (ψ) shows as solid line.

Conductive Polymer: Electrode Interface

Fig. 4: Comparative impedance spectroscopy (left) and phase measurements (right) of a 1 mm² gold electrode and the same electrode cover with PEDOT (80 mC/cm² charge density).

Rojas, Oscar, et al., 2009, Journal of colloid and interface science 333.2, 782-790.

Starbird-Pérez, Ricardo, et al. 2015, Revista Tecnología en Marcha 28.3 (2015): 45-54.

Fig. 8: TEM nanoparticles images (a) gold (b) iron oxide and (c) commercial CNT

Fig. 9: Dynamic light scattering analysis of (a) gold-EDOT micelle (b) iron-EDOT micelle and (c) commercial CNT-EDOT micelle in a Sodium dodecyl sulfate (8,2 mM)

Fig. 10: SEM images of (a) AUNP-PEDOT (b) FeNP-PEDOT and (c) commercial CNT-PEDOT electrodeposited samples.

Fig. 11: Raman spectra of (a) AUNP-PEDOT (b) FeNP-PEDOT and (c) commercial CNT-PEDOT samples.

Fig. 12: TEM images of (a) AUNP-PEDOT (b) FeNP-PEDOT and (c) commercial CNT-PEDOT electrodeposited samples.

Electrochemical Characterization

The $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$ couple is used as reversible redox system in order to study the chemical response of the electrode surface.

Fig. 13: Cyclic voltaaramm of (a) effect of Fe^{3+/}Fe²⁺ concentration (2 mM dotted line, 5 mM dashed line, 10 mM solid line) on a gold electrode in 1M KCI. Scan rate: 100 mV/s. Initial scan direction: positive.

Applications Electrochemical sensors

Mancozeb

- It is used as a fungicide in fruits, vegetables, rice and ornamental plants.
- Health effects included metal overload in human colon cells, thyroid hormone disruption in rats, toxic effects on mammalian granulosa cells, and more importantly, tumor-initiating activity in mouse skin.
- In Costa Rica, residues for MCZ were detected in the urine samples of children living close to agricultural plantations.

Figure 3. Coated electrode imagens: a) electrode surface roughness (inset: PEDOT/MWCNT coated electrode), b) MWCNT aggregates inside the PEDOT layer and c) MWCNT anchored to the PEDOT layer.

Ricardo Starbird et. al. Development of Poly(3,4-ethylenedioxythiophene(PEDOT)/carbon Nanotube Electrodes for Electrochemical Detection of Mancozeb in Water. Int. J. Electrochem. Sci., 13(2018)1931-1944, doi: 10.20964/2018.02.20

Mancozeb

ីភ្លំបន្ដាំង g = 8∞ 84 stanging Tenghinet Ru Ingulani Distances of the second 1.0753 **₩**2002 Persilian da 2.9609 制造 得得到高权 Take Short-re Gray 全秘统组织 10-00-00 Q.IIIIIAS hatemugh Charlest 2A anee WARRANG IN X-DARS & C-4 0.000035 A PRODUCT 200 TR 200 C 100 120 1499 1633 (NCZ) /µmal/L

Figure 4. Voltammograms obtained for different MCZ concentrations of 0, 25, 50, 75, 100, 150, 200 and 250 μ mol/L in BRBS at pH 7 using PEDOT/MWCNT electrode.

Figure 5. Calibration curve MCZ (25, 50, 75, 100 and 150 µmol/L) in BRBS at pH 7 using PEDOT/MWCNT electrode.

Chlorpyrifos

- Chlorpyrifos (CPF) is an organophosphate insecticide.
- It can cause cholinesterase inhibition in humans leading to an overstimulated nervous system and death at very high exposures.
- A biosensor may be produce if an enzyme is fixed to a sensor and its activity is reduce in a 70% by the presence of the CPF.

Biosensor: enzyme immobilization

Fig. 14: Enzymatic activity curve (a) AChE soluble (b) AChE fixed in a polymeric Matrix

Fig. 2. Measurements of the ATCh (1500 μ M) by cyclic voltammetry without inhibitor at a) 0 min of reaction, b) 1.5 min of reaction and c) 10 min of reaction.

Biosensor

Fig. 4. Determination of Inhibition constant (Ki) according to inhibitor concentration and reaction velocity (\bullet) 1500 μ M (\bullet) 375 μ M ATCh.

Microfluidic cells

Fig 1. Microfluidic cell (Fabricated by Jorge Sandoval, ITCR)

Fig 2. Electrochemical sensor in a microcavity

TEC Tecnológico de Costa Rica

UNIVERSIDAD DE COSTA RICA

Roy Zamora Oscar Rojas-Carrillo Giovanni Sáenz Esteban Avendaño José Saavedra Federico Masis Monica Prado Carlos A. García-González

Laboratorio Institucional de Microscopía y Laboratorio de Espectroscopia RAMAN (TEC)

