
Nanotechnology Policy in Argentina, Brazil and Mexico

Noela Invernizzi, Guillermo Foladori

Nanosafety Workshop for the Latin American and Caribbean region Panama City, Panama – 1 - 2 February 2018

Americana de Nanotecnicista

Red Latinoamericana de Nanotecnología y Sociedad
Rede Latinoamericana de Nanotecnología e Sociedade
Latin American Nanotechnology & Society Network

ReLANS

Fundamentos y propósito

Actividades

Publicaciones

Miembros

Nanotec en América Latina

Centro de Nanotecnología y Sociedad (UCSB)

Nanotecnologia, Sociedade e Desenvolvimento

<u>Declaración</u> emitida en el Seminario Internacional Nanotecnología y Sociedad en América Latina:

Nanotecnología y Trabajo, en Curitiba, Brasil, el 5 de septiembre de 2013

¿Interesado en apoyar esta <u>declaración</u>?

Ativar o Window

Acesse Configurações para ativar o Windows.

Goal

• To analyze, in a comparative manner, the design, implementation, forms of governance and outcomes of nanotechnology policy in Argentina, Brazil and Mexico between 2000-2016

Methodology

- **Dimensions** analyzed partially based on OECD *Survey on Nanotechnology* (OECD, 2009).
 - Policy design
 - o Instruments and funding
 - Actors and governance
 - ELS and EHS aspects

Outcomes Indicators

- Scientific performance: publications, research personnel, education
- o *Industrial performance*: patents, companies with activities in NT, production chain development
- Information sources: policy documents, S&T agencies reports, literature review, some interviews with policy makers

Minerva (2015) 53:279-301 DOI 10.1007/s11024-015-9281-6

Argentina

published;

preparation

others in

cases

Nanotechnology in Mexico: Key Findings Based on OECD Criteria

Guillermo Foladori1 · Edgar Arteaga Figueroa2 · Edgar Záyago Lau1 · Richard Appelbaum3 · Eduardo Robles-Belmont4 · Liliana Villa5 · Rachel Parker6 · Vanessa Leos5

Policy Design

- US NNI; European Strategy for NT as policy models
- In most OECD countries:
 - ✓NT as strategic technology
 - ✓ Goal increasing competitiveness
 - ✓ Policy National Program + Public funding

(OECD, 2009)

- World Bank, Unido, OEA promoted NT as strategic for developing countries
- NT established as strategic area in STI policy in Mexico (2001), Argentina (2003) and Brazil (2004) (By 2010, 13 Latin American countries had done so).

Policy design

In common with OECD countries

- ✓ **Goals**: increase competitiveness of national industries to reach better positions in the global market
- ✓ Policy format national program as best approach
- ✓ Public funding necessary

Local editions:

- ✓ National program only materialized in Brazil (2004).
- Policy mostly restricted to MST or S&T agencies, with uneven involvement of Min Industry, and almost no involvement of other ministries and agencies.
- ✓ Unstable funding

Policy Instruments

- RESEARCH NETWORKS
- MULTI-USER RESEARCH INFRASTRUCTURE
- INNOVATION IN COMPANIES R&D subsidies, funds for start ups and NT clusters
- INTERNATIONAL COOPERATION

In Common with OECD countries

✓ Instruments were similar in the three countries and compared to industrialized countries

Local Editions

✓ No sistematic instruments directed to social aspects and risks of NT (In Brazil, risk research after 2010)

Funding

- ✓ Efforts done; some large investments (labs)
- ✓ Pulverization of resources, several sectors
- ✓ Fluctuations along the period
- ✓ Very small private funding

• S&T ministries are minor ministries with lack of power in the struggle for resources in the three countries. Sustained implementation of the policy was difficult.

Governance: actors involved

- 80% of OECD countries' NT policies included mechanisms to receive public input and promoted public engagement (OECD, 2009).
- Leading role in global NT governance.

In LA countries

- ✓ NT governance limited to traditional actors: bureaucrats, scientists, and a fragile participation of business.
- ✓ Global governance: participation at ISO Committee 229; SAICM and OMS (only BR)
- ✓ Organized social groups with limited, often not direct, participation
- MEX: two anarchist attacks on laboratories and scientists!
- ✓ ReLANS: academic activism.

ELSI and EHS

• NT policies in 18 OECD countries included ELSI and EHS issues; 13 of them as special programs and the remaining as a general principle (OECD, 2009)

In LA countries

- ✓ No ELSI and EHS components in BR until 2012; even less in decentralized
 NT actions in ARG and MEX
- ✓ ARG –EU Code of Ethics, discontinued; informative workshop
- ✓ BR Limited ELSI concern; EHS actions from 2010 on, and goal in IBN.
- ✓ MEX No mention in policy; no organized actions
- ✓ No discourse on "Responsible Development of NT"

Why?

- · Narrow vision of scientists; focus on innovation turned anti-regulation;
- No engagement of Min of Environment, Health, Labor, etc. in NT policy
- Limited mobilization of organized social movements on the issue

Policy outcomes: Scientific capabilities

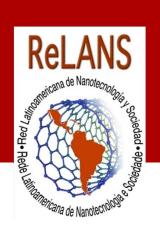
- Number of NT researchers a nanotechnology research community was formed in the three countries:
- ✓ ARG 630 researchers, 94 research groups
- ✓ BR- 3000 researchers + 2000 graduate students, 1200 research groups or research lines.
- ✓ MEX 500 researchers + 500 grad students in the N&N National Network (partial data)

Policy outcomes: Scientific capabilities

Publications – ISI Web of Science

	2010	2011	2012	2013	2014	2015
Argentina	408	368	422	453	500	551
Brasil	1221	1332	1552	1844	2114	2213
México	528	743	828	959	1073	1254

Fonte: (STATNANO, 2016, p. 3)



Policy outcomes: Scientific capabilities

- Undergraduate and graduate NT training
 - ✓ ARG No new dedicated programs. Specialization in NT after undergraduate courses
 - ✓ BR 5 new dedicates NT graduate programs + research lines in existing graduate programs, 4 undergraduate programs
 - ✓ MEX 44 NT doctoral programs, 43 master programs and 12 undergraduate
 - •NT education was more a liberal result of universities' and researchers' perceptions of the training needs than a result o policy guidelines (that were very generic).

Policy outcomes: Industrial performance

Nanotechnology patents granted by USPTO and EPO

	2010	2011	2012	2013	2014	2015
Argentina	3	4	3	4	3	6
Brasil	15	20	22	29	40	36
México	5	4	14	21	28	29

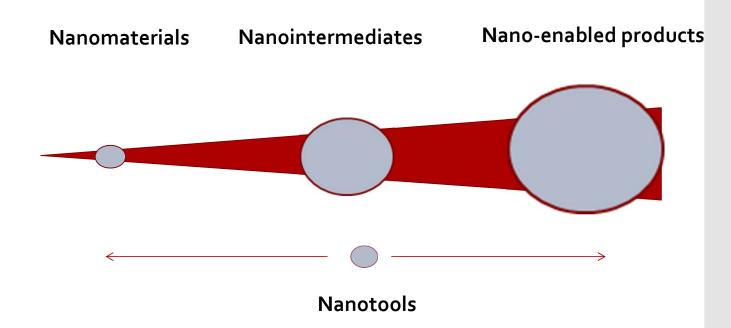
Source: (STATNANO, 2016, p. 4)

Estados Unidos, encabeçando a lista, teve 4365 patentes outorgadas no próprio país e na Europa em 2015, enquanto que a China, ocupando a quinta posição, teve nesse mesmo ano, 393 patentes concedidas nos EUA e na Europa (STATNANO, 2017).

Guiherme, 30-Sep-17

Number of companies with activities in nanotechnology

Policy outcomes: Industrial performance


ARGENTINA	BRAZIL	MEXICO		
~ 37	~ 350	~ 139		
Chemicals Pharmaceuticals	Chemicals Health materials Pharmaceuticals	Chemicals Electronics		

Source: ReLANS database

Policy outcomes: Industrial performance

Distribution of firms in the NT production chain

In spite of the difference in the number of firms, the three countries followed the same production chain pattern.

Conclusions

- •There was a process of NT policy emulation evidenced in: timing, strategic area discourse, competitiveness goal, and similar instruments
- •However, inherent asymmetries between developed and developing countries conditioned the nanotechnology policy emulation process from the start.

Conclusions

Policy re-contextualization:

- ✓ Difficult implementation of a national program. Even in Brazil, difficulties in engaging government partners
- ✓ Governance deficit traditional actors, decisive role of nanoscientists, restricted business involvement. Lack of public participation
- ✓ Significant omission of EHS and ELSI components
- ✓ Contrasting nanotechnology discourse as strategic area with limited and unstable resources

Conclusions

- ✓ Considerable success in incorporating nanotechnology to local research agendas and in developing research capabilities
- ✓ Industrial outcomes still incipient, likely concentration in less innovation-intensive NT activities.
- ✓ Difficulty to fill all production chain bonds.

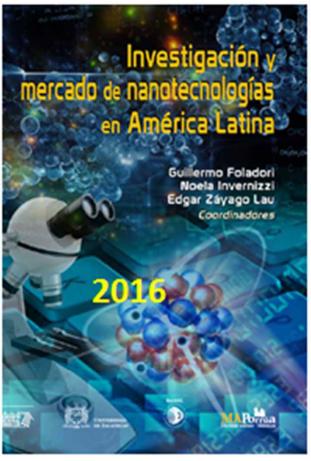
RELANS' publications

Universidad de los Andes, in Press

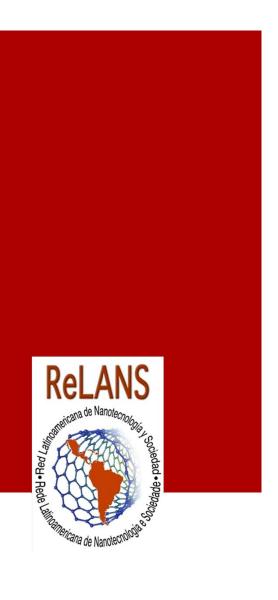
Ladenas de producción de las nanotecnologías en América Latina

Argentina, Brasil, Colombia y México

Coordinadores


Guillermo Foladori Noela Invernizzi Johann Osma Edgar Záyago Lau 2018

RELANS' publications



Site Mexico en la Nanoeconomía

http://micrositios.cinvestav. mx/nano/Mapa

Thank you for your attention! ¡Gracias por su atención! Obrigado pela sua atenção!