

CLIMATE CHANGE & NATIONAL PRIORITY:

Strategy to Strengthen
Human Capacity & Expertise

By:

Dr. YETTI RUSLI MSc.

- Senior Adviser To The Minister of Forestry on Environment & Climate Change
- Chairperson of Climate Change Working Group MoF

National Planning Workshop "Developing National Strategy to Strengthen Human Resources Capacities & Skill to Advance Green, Low Emission & Climate Change Resilient Development" by DNPI, Surveyor Indonesia, & UNITAR. Jakarta, October 9, 2012

YR@YETTI RUSLI

National Planning Workshop "Developing National Strategy to Strengthen Human Resources Capacities & Skill to Advance Green, Low Emission & Climate Change Resilient Development"

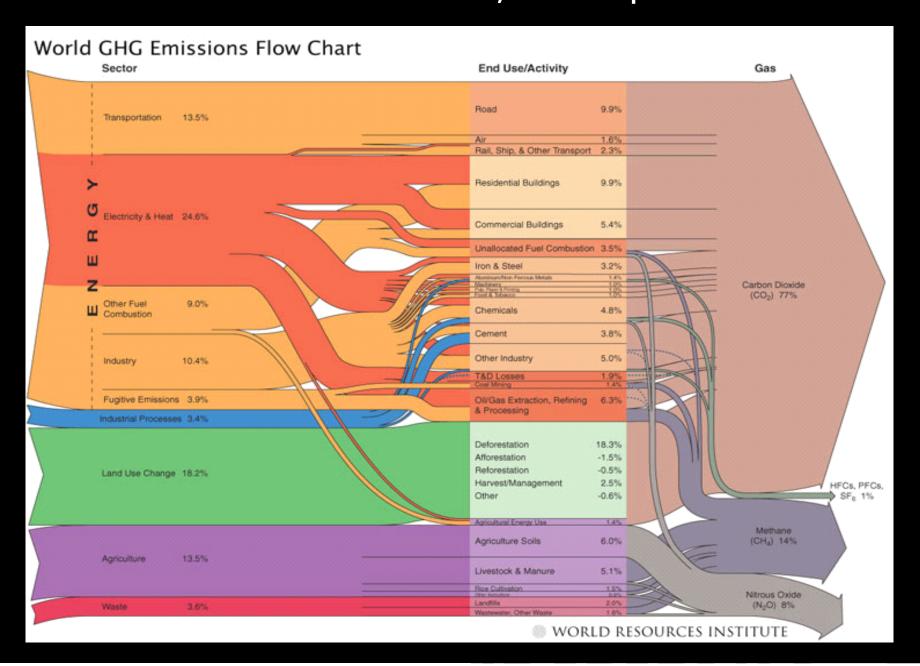
SCOPING:

- National Strategy
- Human Capacities & Skill
- Climate Change
- Development

To be considered

- "strategic choices"
- "leverage/lifting up"...
 capacity
- "modalities" (National/ sectoral—facing global)

Menembak: - peringatan,


- lumpuhkan,
 - matikan

CLIMATE CHANGE GLOBAL & NATIONAL

NICHOLAS STERN REVIEW, 2007 p.199:

Understanding the Fact:

Forests' role in global carbon

Reservoirs

Sinks

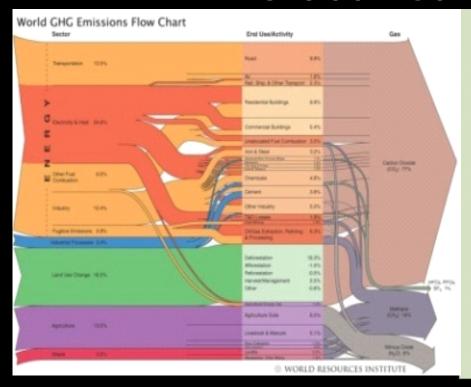
Sources

(deforestation)

1650 GtC

more than twice the carbon as in the atmosphere

2.6 GtC/yr


1.6 GtC/yr =

17.4% GHG emissions

CO2 Global Emissions and Global Carbon Forests

Forests' role in global carbon

Reservoirs

Sinks

Sources

(deforestation)

1650 GtC

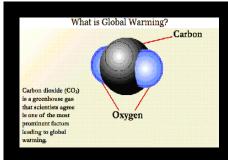
more than twice the carbon as in the atmosphere

2.6 GtC/yr

1.6 GtC/yr =

17.4% GHG emissions

INDONESIA:


2020: 26% up to 41 %

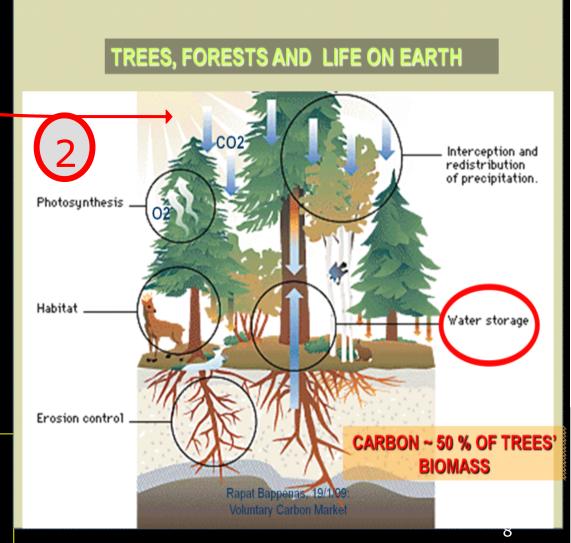
26%: 87% forestry, peat

13% non forest


ratio Indonesia (54 : 46), world 20 : 80

GLOBAL WARMING

80 % CO2



TREES ARE THE SOLUTIONS:

- ABSORBING CO2
- ~ 50% trees' biomass is a solid C/green products

YR@YETTI RUSLI

Challenge:

MITIGATION ACTIONS JOINTLY SOLVE CO2 emission (Capture CO2)

"CCS" INDONESIA
"VIOCE of FORESTS"

Photosynthesis

O2

Habitat

Erosion control

Carbon capture and storage (CCS)

Convertion vector of Tree's biomass - CO2eq:

Tree's biomass to carbon ~ 0.5 Carbon to CO2 ~ 3.7 Biomass to CO2 ~ 1.83

GLOBAL & USEFUL INDICATORS FOR NATIONAL (point of leverage)

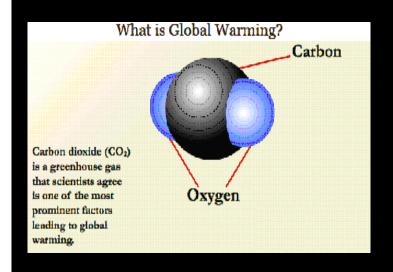
Green Economy

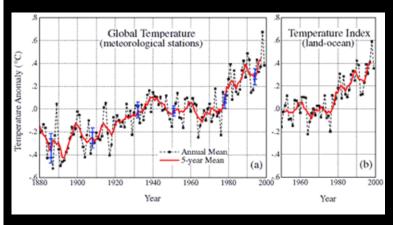
(UNEP 2011, Towards a Green Economy)

- Results in improved human wellbeing and social equity, while significantly reducing environmental risk and ecological scarcities"
- "REDD+ regime may be the best current opportunity to facilitate the transition to a green economy for (from) forestry"

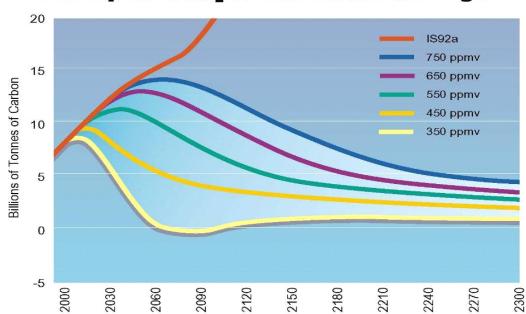
Continue.. UNEP 2011, Towards a Green Economy

 investing 0.03% of GDP b/w 2011-2050 to conserve forests & private investment for reforestation → >20% increase value added in forest industry compare to BAU

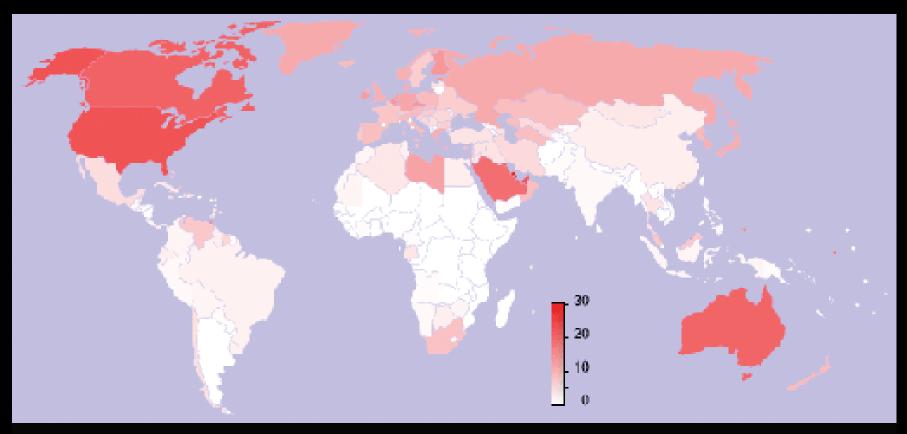

SCALING UP ACTIVITIES


- Carbon cycle intervention: more solid C/less CO2, and more green products
- Introducing new commodity (CO2eq, carbon forest) green products, supply / demand, investment, financial institution

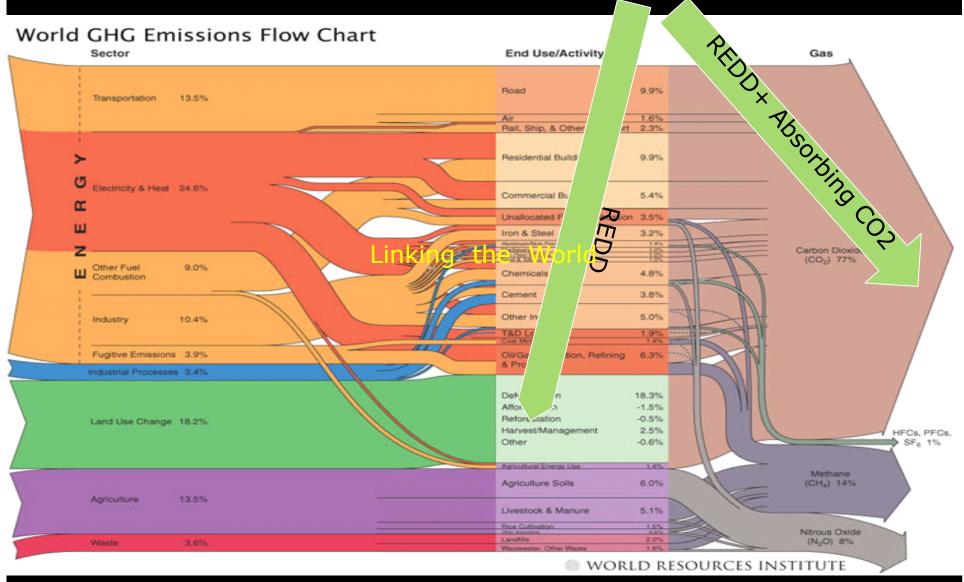
STRATEGY TO SCALE UP


- work together (companionship)
- keep it simple & workable
- understand by global (carbon market, green energy, green investment for commodity and services)

GHG and Climate Change


Emissions Trajectories Consistent With Various Atmospheric CO₂ Concentration Ceilings

The path to avoid $\Delta T_{avg} > 2$ °C (gold)


Linking the World

GHG concentration: CO₂, CH₄, N₂O,

Tons Carbon Dioxide Emmited per capita per annum

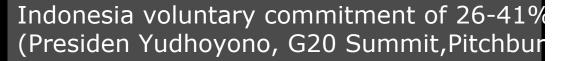
Basic data/idea: Linking the World

Indonesia's Forests for Today and Tomorrow: Future Possible Value

ConservationProtected Forests 30,9 m ha Forests 25.3 m ha.

Production Forests 80.4 m ha

Forests



Ecosystem/ **Environment** Services/

Renewable Energy Commodity (Wood pellet, Methanol)

VALUE RELATED TO CLIMATE CHANGE???

President Decree (61/2011) on National Action Plan for GHG Emission Reduction

	Emis	sion Reduction					
Sectors	000/		+15%		Total	Percentage	
	26%	Percentage	(Total 41%)	Percentage			
Forestry and Peatland	0,672	87,6%	0,367	87,0%	1,039	87,4%	
Waste	0,048	6,3%	0,030	7,1%	0,078	6,6%	
Agriculture	0,008	1,0%	0,003	0,7%	0,011	0,9%	
Industry	0,001	0,1%	0,004	0,9%	0,005	0,4%	
Energy and Transportation	0,038	5,0%	0,018	4,3%	0,056	4,7%	
Total	0,767	100,0%	0,422	100,0%	1,189	100,0%	

Indonesia Forest Carbon Remote Sensing Data

SERAPAN KARBON HUTAN (ABOVE GROUND BIOMASS) DI LUAR LAHAN GAN

TAHUN 2000 s/d 2011

C.	T	\bigcap	KS
	1		

S	TOCKS	5			7,111011 2000 57						
			Fungsi	TAHUN							
STOK KARBON HUTAN (ABOVE GROUN		Kawasan Hutan	2000	2003	2006	2009			Emissi	on	
TAHUN 200		HL	72.729.114	75.205.19	90 84.694.	423 53.421	.397			OH	
			KSA/KPA	39.834.289	48.147.9	FMISI KA	RBON HUTAN (ABO	OVE GROUND BIOM	ASS) DI LUAR LAHA	N GAMBUT	
Fungsi			HP	183.943.309	203.716.7	·		TAHUN 2000 s/d 20			
Kawasan Hutan	2000	2003	HPT	88.524.763	90.456.4						
HL	5.901.396.956	5.876.441.117	HPK	77.591.514	82.594,2	Fungsi		TAH	UN		
KSA/KPA	3.845.247.552	3.828.041.752	APL	216.071.804	233.871.2	Kawasan Hutan	2000	2003	2006	2009	
HP	5.333.445.665	5.247.671.666	C (ton)	678.694.793	733.991.7	HL	25.737.034	75.321.518	46.062.111	17.425.319	
HPT	4.409.919.281	4.358.887.394	CO2e total	2.490.809.892		KSA/KPA HP	17.818.552	48.445.535	29.088.806	5.936.892	
HPK	3.017.327.836	2.980.624.545	CO2e/Tahun	830.269.964		HPT	94.307.926 55.807.574	164.327.234 100.659.669	159.713.528 58.011.588	96.463.239 17.423.963	
APL	4.107.787.475	4.034.635,660	eoze/ranan	030.203.304	057.510.5	HPK	38.969.239	67.624,690	70.646.981	21.060.157	
C (ton)	26.615.124.764	26.326.302.134	Catatan :			APL	79.619.708	146.580.550	169.109.558	197 .362.000	
CO2e total	97.677.507.886	96.617.528.831	-	ranan karban dina	roloh dari nana	C (ton)	312.260.033	602.959.195	532.632.571	355.671.570	
COZE (Oldi	37.077.307.000	30.017.320.031		erapan karbon dipe		CO2e total	1.145.994.321	2.212.860.246	1.954.761.536	1.305.314.661	
			serapan karbo	n juga dihitung dari	kondisi hutan s	CO2e/Tahun	381.998.107	737.620.082	651.587.179	652.657.331	
Catatan :						Catatan :					
Perhitungan Stok Karbon didasarkan pada perkalian data aktivitas dan emission factor.					- Perhitungan emisi karbon diperoleh dari pengurangan stok karbon tahun sebelumnya terhadap						
Data aktivitas dinaralah dari paruhahan panutunan lahan nada kalas panutunan lahan (23 kalas)						tahun saat ini (Contoh: Emisi 2000-2003 diperloeh dari Stok Karbon tahun 2000 dikurangi tahun 2003)					

Sequestration

		22.2.2.2					
EMISI KARBON HUTAN (ABOVE GROUND BIOMASS) DI LUAR LAHAN GAMBUT							
	TAHUN 2000 s/d 2011						
Fungsi		TAH	IUN				
Kawasan Hutan	2000	2003	2006	2009			
lL .	25.737.034	75.321.518	46.062.111	17.425.319			
SA/KPA	17.818.552	48.445.535	29.088.806	5.936.892			
Р	94.307.926	164.327.234	159.713.528	96.463.239			
PT	55.807.574	100.659.669	58.011.588	17.423.963			
PK	38.969.239	67.624,690	70.646.981	21.060.157			
ρĹ	79.619.708	146.580.550	169.109.558	197 .362.000			
(ton)	312.260.033	602.959.195	532.632.571	355.671.570			
O2e total	1.145.994.321	2.212.860.246	1.954.761.536	1.305.314.661			
O2e/Tahun	381.998.107	737.620.082	651.587.179	652.657.331			
atatan :							
Perhitungan er	misi karbon diperole	eh dari penguranga	n stok karbon tahu	n sebelumnya terh			

²⁰⁰⁰ 2003 2006 2011 2009 Stock CO2e total 97.677.507.886 96.617.528.831 94.780.197.499 93.355.121.182 92.216.984.119 Emisi CO2e/Tahun 381.998.107 737.620.082 651.587.179 652.657.331 Serapan CO2e/Tahi 830.269.964 897.916.597 991.182.316 934.059.928

Source: DG PLANOLOGI MoF, 2012

- Data aktivitas diperoleh dari perubahan penutupan lahan pada kelas penutupan lahan (23 kelas)

* Not been published yet

DEFORESTATION RATE

Rate of Deforestation	1990-1996	1996-2000	2000-2003	2003-2006	2006-2009	2009-2011*
Indonesia	1,87	3,51	1,08	1,17	0,83	0,45
Forest Area	1,37	2,83	0,78	0,76	0,61	0,32
Non Forest Area	0,5	0,68	0,3	0,41	0,22	0,13

Do You Believe: FORESTS/TREES BEING A REMEDY for CLIMATE CHANGE ????.

or is it (Forests/Trees) only a problems???

Be a hero for yourself your regions and the world (mother earth)

TREES / FOREST AND GHG CO2 CYCLE by doing

- Planting trees: absorbing CO2
- Managing Forest: Holding solid C in term of standing biomass
- Producing Sustainable Renewable
 Biomass: absorbing CO2 continuously;
 Providing renewable green
 products—holding solid C and
 replace/substitute high CO2 products
 (coal, oil, cement, steel, etc)
- Reducing Emission From Forest: Self remedy

GLOBAL & NATIONAL CHALLENGES

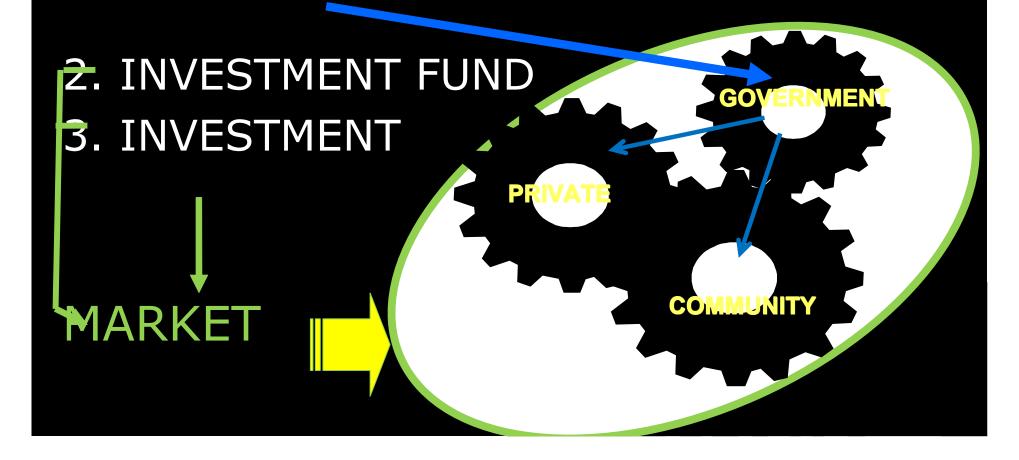
CLIMATE CHANGE: FRAME of Approach

GLOBAL COMMITMENT

HOW TO MOVE THE WHEELS: (Main Factors)
Technical
Economic,
Global Politics

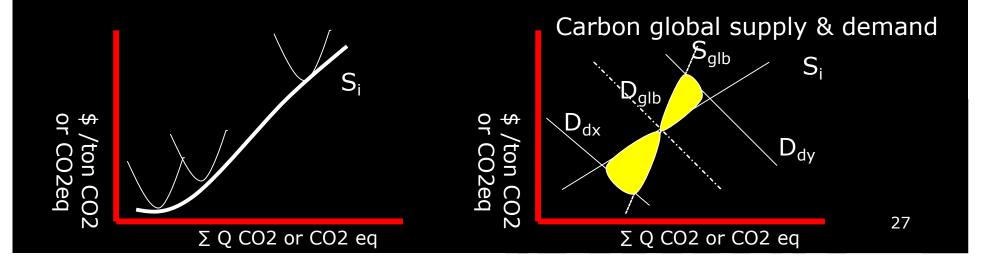
CURRENT Base position --- Change of Scale (Innovation, participations, exp. Economic of Scale)

FUTURE Development ... Green Development (low emission....)


Challenge:

FINANCING MECHANISM should be for ALL TYPE OF FORESTS

(an OPTION)


1. Funding!!

PROJECT

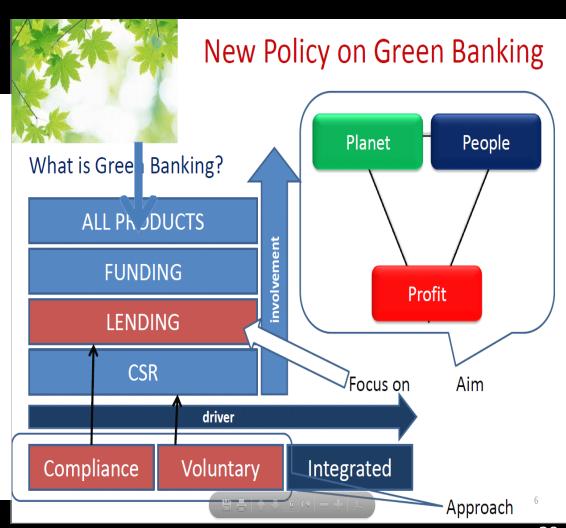
UNDERSTANDING ECONOMIC OF CLIMATE CHANGE: **FOREST RELATED**

- SCHEME AND VALUE OF CARBON FORESTS (Sequestration, Stocks, -Emission)
- TRANSFER PRICE MECHANISM (market based), Carbon Offset...
- Eliasch Review 2008: have to include forests carbon in the market for ambitiuos overall emission target
- WHAT IS ABATEMENT COST, COST CURVE, long-term, global /regional supply-demand

Towards Green: examples

Source: Edi Setijawan, Researcher Indonesia Central Bank.

UK GOV


House of Commons

Environmental Audit Committee

The Green Investment Bank

Second Report of Session 2010–11

Volume I: Report, together with formal minutes, oral and written evidence

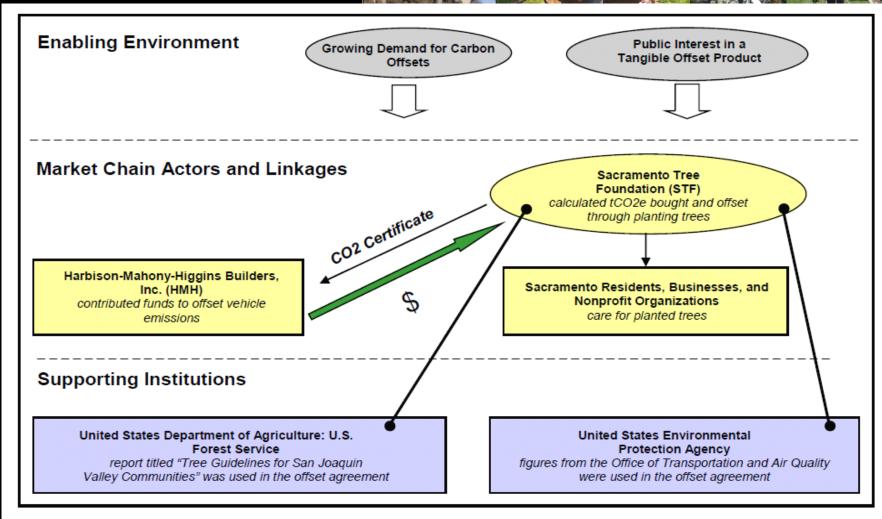
FOREST BIOMASS AND FUTURE RENEWABLE ENERGY...

Green Fuel A

Honeywell UOP technician holds a vial of the company's "green fuel"—a diesel equivalent that actually delivers more power and can be made from a

variety of oils

WOOD and its wastes can be converted to aviation fuels, diesel, and methanol.



Source: Univ of Washington & MoF, Jakarta 17 Nov 2011

Existing example (US domestic)...
BAGAIMANA INDONESIA ??

Carbon Offsetting Through Urban Tree Planting: The Sacramento Tree Foundation and Harbison-Mahony-Higgins Builders, Inc.

tools

opportunity...VOLUNTARY

Accessibility | Contact

American Carbon Registry®

Trusted solutions for the carbon market

About

Membership

Carbon Registry

Standards & Verification

News

Home

seard

You are here: Home → Standards & Verification → ACR Nested REDD+ Requirements

Standards and

American Carbon Registry Nested REDD+ Requirements

Email 31st January 2012: al accounting f REDD+ Methodologies will the ACR Ness ready approx by summer 2012

al's American Garhon Pagistry (ACP) is devaloping technical quidance for PEDD± projects pasted management

ACR Announces Open Public Comment Period for ACR Nested REDD+ Standard

August 28, 2012: Winrock International, a world leader in developing environmentally rigorous forest carbon standards and methodologies, has developed technical guidance for registration on its American Carbon Registry (ACR) of REDD+ projects nested within a jurisdictional accounting framework.

The ACR Nested REDD+ Standard was developed by Winrock International and ACR with assistance from a jurisdictional REDD+ Technical Advisory Team. ACR welcomes stakeholder comments and feedback on the Standard through September 28, 2012.

The ACR Nested REDD+ Standard provides registration requirements for project-level REDD+ activities – including conservation of forest carbon stocks, sustainable management of forests, and enhancement of forest carbon stocks – following baseline, leakage, monitoring and other technical requirements developed at the jurisdictional level provided these meet certain minimum criteria. The ACR Nested REDD+ Standard also defines social

American Carbon Registry mgrady@winrock.org via mail125.us2.rsgsv.net

American Carbon Registry <mgrady@winrock.org>

yetti.rusli@gmail.com

Wed, Aug 29, 2012 at 1:54 AM

ACR Announces Open Public Comment Period for Nested REDD+ Standard

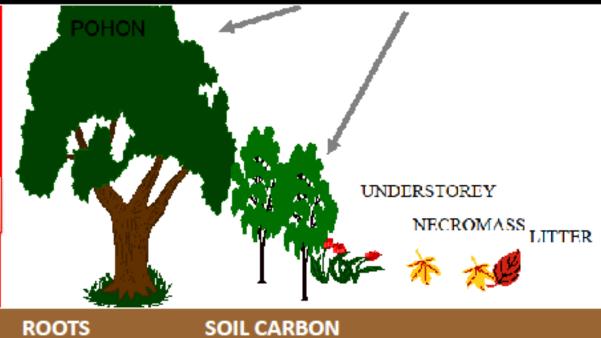
mail125.us2.rsgsv.net

mail125.us2.rsgsv.net

August 29, 20

Unsubscribe from this sender

TO BE CONSIDERED


MISSING FROM IPCC:

- 5 CARBON POOLS (AGB, UNDER STOREY, NECROMASS, LITTER, AND BGB
- (HARVESTED) WOOD PRODUCTS ????

Pool Carbon within products are missing from many global models

GAP???

BGB

Challenge:

Forest CARBON, Climate change (quadran of companionship/starter kit)

+ 20% CO2 FROM DEFOR/ LULUCF

+ 80% CO2 EMISSION FROM FOSIL FUEL

REDD

Reducing emissions: Clean Technology Clean energy Markets (complience, voluntary)

Trees as a remedy/cure for CO2 in the atmosphere (ABSORBING CO2 **COOLING DOWN** THE EARTH)

new AR

NATIONAL, LOCA

GLOBAL

33 YR@YETTI RUSLI

STRATEGY: HUMAN RESOURCES SKILLS & CAPACITIES

- Technical (innovations, more involvement)
- Economics (economic of Scale, Value added/multiplier, global market & investment)
- Politics (International negotiation, national rule & regulation)

POWER OF SCALE UP

inspirea by

Michael Jackson
Song
"HEAL-THE WORLD"
"TREES FOR BETTER LIFE"

Heal the world by planting trees

Planting more means absorbing more CO2

Planting more means produce more green products

These are the anchor of forest for climate change solution..HEAL THE WORLD BY PLANTING TREES..

nank you